6 M ay 1 99 9 Difficult Problems Having Easy Solutions

نویسنده

  • Oscar Bolina
چکیده

We discuss how a class of difficult kinematic problems can play an important role in an introductory course in stimulating students’ reasoning on more complex physical situations. The problems presented here have an elementary analysis once certain symmetry features of the motion are revealed. We also explore some unexpected directions these problems lead us.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 99 05 02 6 v 1 [ m at h . A G ] 5 M ay 1 99 9 DIFFERENTIAL EQUATIONS CHARACTERISING QUASI - PERIODIC SOLUTIONS OF THE KP HIERARCHY

We compute an infinite system of differential equations that characterises the quasi-periodic solutions of the KP hierarchy ; that is, the solutions of this new hierarchy are precisely those solutions of the KP hierarchy coming from theta functions of Jacobians.

متن کامل

ar X iv : p at t - so l / 9 90 50 05 v 1 2 1 M ay 1 99 9 Discrete breathers in systems with homogeneous potentials - analytic solutions

We construct lattice Hamiltonians with homogeneous interaction potentials which allow for explicit breather solutions. Especially we obtain exponentially localized solutions for d-dimensional lattices with d = 2, 3.

متن کامل

v 1 2 7 M ay 1 99 9 Some exact non - vacuum Bianchi VI 0 and VII 0 instantons

We report some new exact instantons in general relativity. These solutions are Kähler and fall into the symmetry classes of Bianchi types VI0 and VII0, with matter content of a stiff fluid. The qualitative behaviour of the solutions is presented, and we compare it to the known results of the corresponding self-dual Bianchi solutions. We also give axisymmetric Bianchi VII0 solutions with an elec...

متن کامل

ar X iv : s ol v - in t / 9 70 50 02 v 1 1 M ay 1 99 7 Rational solutions to d - P IV

We study the rational solutions of the discrete version of Painlevé’s fourth equation (d-PIV). The solutions are generated by applying Schlesinger transformations on the seed solutions −2z and −1/z. After studying the structure of these solutions we are able to write them in a determinantal form that includes an interesting parameter shift that vanishes in the continuous limit.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999